Product Description

 SS Rigid stainless steel grooved coupling / pipe clamp / quick coupling …

Rigid coupling SS acid resistant stainless steel coupling is designed to be used with SCH5S-SCH40S stainless steel pipes

Working pressure: 350PSI, 600Psi,1200PSI
                                 2.5Mpa,4.2Mpa, 8.3Mpa

Materials

Housing: Type CF8M (316) stainless steel ASTM A351, A743 or A744 Gr. CF-8M
Bolts & nuts: Stainless steel ASTM A193 B-8 , (SS316 )

Gasket

Standard gasket: Class “E” EPDM: Recommended to be used with cold and hot water within the temperature range -34 °C – +110 °C. Can also be used with diluted acids, oil-free air and several different chemicals. Not recommended to be used with oils, mineral oils, solvents or aromatic hydrocarbons.
Alternative gasket: Class “T” Nitrile: (Colour code: Orange). Temperature range: -29 °C – + 82 °C. Recommended to be used with oil products, oil containing air, vegetable and mineral oils within the provided temperature range. Also with water below +66 °C. Not to be used with HOT WATER over +66 °C or HOT DRY AIR over +60 °C.

Alternatives:
Class “O” – Fluoroelastomer
Class “L” – Silicone

Dimensions

DN D (mm) Distance between pipe ends (mm) X (mm) Y (mm) Z (mm) Bolt size (mm) Weight (kg)
25 33.4 0-2.2 54.0 100 44 M10x50 0.5
32 42.2 0-2.2 62.0 108 44 M10x50 0.6
40 48.3 0-2.2 68.0 114 44 M10x50 0.6
50 60.3 0-2.2 81.0 128 45 M10x50 0.7
65 76.1 0-2.2 98.0 144 46 M10x50 0.9
80 88.9 0-2.6 111.0 161 47 M10x50 1.0
100 114.3 0-2.6 140.0 189 48 M10x60 1.4
125 139.7 0-2.6 167.0 227 49 M12x70 2.0
150 168.3 0-2.6 197.0 256 49 M12x70 2.3
200 219.1 0-4.9 254.0 322 59 M16x90 4.2
*250 273.0
*300 323.9

Technical data

DN D (mm) Max working pressure
Sch 40S (Bar)
Max tensile strength
Sch 40S2 (kN)
Max working pressure
Sch 10S (Bar)
Max tensile strength
Sch 10S2 (kN)
Max working pressure
Sch 5S (Bar)
Max tensile strength
Sch 5S2 (kN)
25 33.4 25 4.6 25 3.7 16 2.5
32 42.2 25 7.3 25 5.9 16 3.9
40 48.3 25 9.5 25 7.7 16 5.1
50 60.3 25 14.9 25 12.0 16 8.0
65 76.1 25 19.1 25 15.9 16 10.9
80 88.9 25 26.1 25 21.7 16 14.9
100 114.3 25 35.9 25 35.9 16 24.6
125 139.7 16 42.9 16 42.9 10 32.2
150 168.3 16 62.3 16 62.3 10 46.7
200 219.1 16 79.2 16 79.2 10 52.8
*250 273.0
*300 323.9

Not a stock product, confirm delivery time and specifications.
** Only use tools and equipment intended for stainless steel when grooving stainless steel pipes during installation.

Our company is engaged in the production and trade of all kinds of Stainless Steel Grooved Pipe Coupling finished and unfinished products. Stainless Steel Grooved Pipe Coupling is our main production and sell well. We have established business relationships with clients in the Korea, Japan, Singapore, Iran, Dubai, Yemen, Chile, Brazil, France, UK, Italy, Canada and more than 20 countries and regions for Stainless Steel Grooved Pipe Coupling Annual sales revenue is USD 50 billion. The details of payment method, delivery time and minimium quantity and so on for Stainless Steel Grooved Pipe Coupling can be negotiated according to the order. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid coupling

What Are the Maintenance Requirements for Rigid Couplings?

Rigid couplings are known for their simplicity and low maintenance requirements. Since they do not have moving parts or flexible elements, there are minimal wear and tear issues. However, some maintenance considerations for rigid couplings include:

1. Regular Inspection: It is essential to perform periodic inspections of the rigid couplings to check for any signs of wear, damage, or misalignment. Regular inspections can help identify potential issues early and prevent further problems.

2. Shaft Alignment: Proper shaft alignment is critical for rigid couplings. During installation or whenever maintenance work is performed on the connected machinery, the shaft alignment must be checked and adjusted if necessary. Misalignment can lead to premature coupling failure and cause additional stress on connected equipment.

3. Lubrication: Most rigid couplings do not require lubrication since they have no moving parts. However, some special designs or large-sized couplings may have set screws or other fasteners that require lubrication. It is essential to follow the manufacturer’s guidelines regarding lubrication, if applicable.

4. Corrosion Protection: In corrosive environments, protecting the rigid couplings from corrosion is crucial. This can be achieved through the use of corrosion-resistant materials or coatings.

5. Periodic Re-tightening: If the rigid coupling uses set screws or other fasteners, periodic re-tightening may be necessary to maintain the integrity of the connection. This is particularly important in applications with high vibrations or heavy loads.

6. Temperature Considerations: Rigid couplings may experience thermal expansion or contraction, especially in high-temperature environments. It is essential to consider the thermal expansion characteristics of the coupling material and the connected shafts to ensure proper functioning under varying temperatures.

7. Professional Maintenance: In complex systems or critical applications, it is advisable to seek professional maintenance and alignment services. Expert technicians can ensure proper installation, alignment, and maintenance of rigid couplings, reducing the risk of unexpected failures.

Overall, rigid couplings are designed for reliability and longevity, and proper maintenance practices can further enhance their performance and lifespan. Regular inspections and alignment checks are vital for identifying and addressing potential issues before they escalate into costly problems.

rigid coupling

Impact of Rigid Coupling on the Overall Reliability of Connected Equipment

A rigid coupling plays a crucial role in enhancing the overall reliability of connected equipment in mechanical systems. Here’s how it positively impacts reliability:

1. Power Transmission Efficiency: Rigid couplings provide a direct and efficient connection between the shafts of the connected equipment. With no flexible elements, there is minimal power loss, ensuring efficient power transmission from one shaft to another.

2. Elimination of Backlash: Rigid couplings have zero backlash, which is crucial in precision applications. Backlash, which is the play or clearance between connected components, can cause inaccuracies in motion control systems. With a rigid coupling, any movement is directly transferred, maintaining precise positioning.

3. Zero-Maintenance Option: Some rigid couplings are designed to be maintenance-free. They do not require lubrication or periodic adjustments, reducing downtime and ensuring continuous operation.

4. High Torque Transmission: Rigid couplings can handle high torque loads, making them suitable for heavy-duty applications. Their robust construction ensures reliable torque transmission without failure or slippage.

5. Resistant to Misalignment: While rigid couplings offer no flexibility, they are excellent at handling axial misalignment and angular misalignment, provided it falls within their design limits. This ability to tolerate some misalignment enhances reliability and reduces the risk of component damage.

6. Vibration Damping: The stiffness of rigid couplings aids in damping vibrations generated during operation. By minimizing vibrations, the coupling helps protect connected equipment from excessive stress and fatigue failure.

7. Increased System Stiffness: Rigid couplings contribute to the overall stiffness of the mechanical system. This stiffness improves the dynamic response of the system and reduces the likelihood of resonance, leading to more reliable operation.

8. Simple and Compact Design: Rigid couplings have a straightforward and compact design, which reduces the chances of component failure or wear. Their simplicity makes them easy to install and maintain, further enhancing system reliability.

9. Suitable for High-Speed Applications: Rigid couplings are well-suited for high-speed applications due to their ability to maintain accurate shaft alignment and transmit torque efficiently.

10. Compatibility with Various Industries: Rigid couplings find applications in a wide range of industries, including automotive, aerospace, manufacturing, and more. Their versatility and reliability make them a popular choice in demanding industrial environments.

Overall, the use of a properly selected and installed rigid coupling enhances the reliability of connected equipment by providing a robust and efficient connection between shafts. It ensures precise power transmission, reduced maintenance requirements, and improved system performance, leading to increased overall reliability and uptime of the mechanical system.

rigid coupling

Types of Rigid Coupling Designs:

There are several types of rigid coupling designs available, each designed to meet specific application requirements. Here are some common types of rigid couplings:

  • 1. Sleeve Couplings: Sleeve couplings are the simplest type of rigid couplings. They consist of a cylindrical sleeve with a bore in the center that fits over the shaft ends. The coupling is secured in place using setscrews or keyways. Sleeve couplings provide a solid and rigid connection between shafts and are easy to install and remove.
  • 2. Clamp or Split Couplings: Clamp couplings, also known as split couplings, are designed with two halves that fit around the shafts and are fastened together with bolts or screws. The split design allows for easy installation and removal without the need to disassemble other components in the system. These couplings are ideal for applications where the shafts cannot be easily moved.
  • 3. Flanged Couplings: Flanged couplings have flanges on each end that are bolted together to form a rigid connection. The flanges add stability and strength to the coupling, making them suitable for heavy-duty applications. They are commonly used in industrial machinery and equipment.
  • 4. Tapered Couplings: Tapered couplings have a tapered inner diameter that matches the taper of the shaft ends. When the coupling is tightened, it creates a frictional fit between the coupling and the shafts, providing a rigid connection. These couplings are often used in applications where high torque transmission is required.
  • 5. Marine or Clampshell Couplings: Marine couplings, also known as clampshell couplings, consist of two halves that encase the shaft ends and are bolted together. These couplings are commonly used in marine applications, such as propeller shafts in boats and ships.
  • 6. Diaphragm Couplings: Diaphragm couplings are a type of rigid coupling that provides some flexibility to accommodate misalignment while maintaining a nearly torsionally rigid connection. They consist of thin metal diaphragms that transmit torque while compensating for minor shaft misalignments.

The choice of rigid coupling design depends on factors such as shaft size, torque requirements, ease of installation, and the level of misalignment that needs to be accommodated. It is essential to select the appropriate coupling design based on the specific needs of the application to ensure optimal performance and reliability.

China Good quality ASTM A351 CF8m 350psi - 500psi 316 Rigid Coupling  China Good quality ASTM A351 CF8m 350psi - 500psi 316 Rigid Coupling
editor by CX 2024-05-07